This map is based upon Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office. © Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings. London Borough of Havering Licence No. 0059472 2016

Notes:
1) Areas of no LiDAR data are in grey or left blank

Figure 101
Location Plan
Havering SFRA

Key
- Borough Boundary
- Main Rivers
- Thames Tidal Defences
- Topography
- LiDAR (mAOD)

Not to Scale 21/11/2016
Note:
1) In accordance with the National Planning Practice Guidance existing solid buildings within Flood Zone 3b (functional floodplain) should be treated as being within Flood Zone 3a. Additionally areas identified as FZ3b but protected by existing defences or infrastructure should also be treated as FZ3a.
2) Flood Zone 3b has been based on two sources: the 5% AEP flood extent outlines from the Black’s Brook, BIM and Mardyke models or the ‘High’ NaFRA classification for Emerson Park Stream, Paines Brook and Weald Brook.
Data Sources: In accordance with the latest guidance from the Environment Agency the impact of climate change on predicted fluvial flood extents are based on a +10% change in peak river flow for the 1 in 100 annual chance event where detailed modelling for the undefended scenario is available (i.e. the Beam, Ingrebourne and Mayes Brook, Blacks Brook and River Mardyke). The predicted impact of climate change upon the River Thames flood extent is based upon sea level rise allowances.
Data Sources: In accordance with the latest guidance from the Environment Agency the impact of climate change on predicted fluvial flood extents are based on a +15% change in peak river flow for the 1 in 100 annual chance event where detailed modelling for the undefended scenario is available (i.e. the Beam, Ingrebourne and Mayes Brook, Blacks Brook and River Mardyke). The predicted impact of climate change upon the River Thames flood extent is based upon sea level rise allowances.
Data Sources: In accordance with the latest guidance from the Environment Agency the impact of climate change on predicted fluvial flood extents are based on a +25% change in peak river flow for the 1 in 100 annual chance event where detailed modelling for the undefended scenario is available (i.e. the Beam, Ingrebourne and Mayes Brook, Blacks Brook and River Mardyke). The predicted impact of climate change upon the River Thames flood extent is based upon sea level rise allowances.
Data Sources: In accordance with the latest guidance from the Environment Agency the impact of climate change on predicted fluvial flood extents are based on a +35% change in peak river flow for the 1 in 100 annual chance event where detailed modelling for the undefended scenario is available (i.e. the Beam, Ingrebourne and Mayes Brook, Blacks Brook and River Mardyke). The predicted impact of climate change upon the River Thames flood extent is based upon sea level rise allowances.
Data Sources: In accordance with the latest guidance from the Environment Agency the impact of climate change on predicted fluvial flood extents are based on a +70% change in peak river flow for the 1 in 100 annual chance event where detailed modelling for the undefended scenario is available (i.e. the Beam, Ingrebourne and Mayes Brook, Blacks Brook and River Mardyke). The predicted impact of climate change upon the River Thames flood extent is based upon sea level rise allowances.